首页 > 百科 > 儿童教育

芝诺的四个著名悖论(芝诺最著名的四个悖论)

来源: 更新时间:2022-05-23 21:01:52
The Beginning

  芝诺(zenon,鼎盛期约在公元前468年)是巴门尼德的学生。他针对伊奥尼亚派的变化本原观,提出否认运动可能性的四个著名悖论。1、二分法悖论。2、阿基里斯悖论。3、飞矢不动。4、游行队伍悖论。

芝诺的四个著名悖论

  1、二分法悖论

  一个人在到达目的地之前,要先走完路程的1/2,再走完剩下总路程的1/2,再走完剩下的1/2。按照这个要求可以无限循环的进行下去。因此有两种情况:①这个人根本没有出发;②只要他出发了,就永远到不了终点。(尽管离终点越来越近)

拥有帝国一切,皆有可能。欢迎访问phome.net

  2、阿基里斯悖论

拥有帝国一切,皆有可能。欢迎访问phome.net

  其实,这个悖论就是指这个有趣的故事——阿基里斯与乌龟赛跑。阿基里斯是古希腊神话中善跑的英雄。在他和乌龟的竞赛中,他速度为乌龟10倍,乌龟在前面100米跑,他在后面追,但他不可能追上乌龟。

芝诺的四个著名悖论

  3、飞矢不动

  “飞矢不动”中的“矢”指的是弓箭中的箭。正常的射箭,任何人都知道,只要箭离了弦,就能飞出去,经过一段空间运动后,到达另一个位置。

  然而,芝诺认为:如果我们截取“飞矢”的每一个瞬间,它在空中都是“静止”的。既然每一个瞬间都是静止的,所有的瞬间加起来也应该是静止的,因此,“飞矢”是“不动”的。

芝诺的四个著名悖论

  4、游行队伍悖论

  假设在运动场上,在一瞬间(一个最小时间单位)里,相对于观众席A,队列B、C分别各向右和左移动一个距离单位。

  而此时,相对于B,C移动了两个距离单位。芝诺认为,既然队列可以在一瞬间(一个最小时间单位)里移动一个距离单位,也可以在半个最小时间单位里移动一个距离单位,那么,半个时间单位就等于一个时间单位。

THE END

TAG:芝诺  悖论  最著名  

猜你喜欢

相关文章